Introduction to Materials Science and Electronic Materials

Introduction to Materials
Science and Electronic Materials

<![if !vml]><![endif]><![if !vml]><![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

 

Material
Classifications based on Bonding Method

<![if !supportEmptyParas]> <![endif]>

Bonds can be
classified as metallic, Ionic, Covalent, and van der Waals.

<![if !supportEmptyParas]> <![endif]>

<![if !vml]><![endif]><![if !vml]><![endif]><![if !vml]><![endif]><![if !vml]><![endif]>

 

Material
Classifications based on Crystal Structure

Amorphous
Materials

<![if !vml]><![endif]>

Polycrystalline
Materials

<![if !supportEmptyParas]> <![endif]>

<![if !vml]><![endif]>EBIC image of a polycrystalline Si Material

<![if !supportEmptyParas]> <![endif]>

 

Crystalline
Materials

Crystalline materials are
characterized by an atomic symmetry that repeats spatially. The shape of the unit cell depends on the
bonding of the material. The most
common unit cell structures are diamond, zincblende (a derivative of the
diamond structure), hexagonal, and rock salt (simple cubic).

<![if !supportEmptyParas]> <![endif]>

<![if !vml]><![endif]><![if !vml]><![endif]>Hexagonal Crystal Structure (Ex.Wurtzite)

<![if !vml]><![endif]><![if !vml]><![endif]>

 

<![if !supportEmptyParas]> <![endif]>

Defects in
Semiconductors

<![if !vml]><![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !vml]><![endif]>

 

Interstitials:

Atoms residing on lattice sites
are called interstitials. They can be
foreign, unwanted impurities, intentionally introduced impurities, or
“misplaced” host atoms.

<![if !vml]><![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

Substitutional
Impurities:

<![if !supportEmptyParas]> <![endif]>

Foreign impurities can replace a
host atom in the lattice site. They can be foreign, unwanted impurities, or
intentionally introduced impurities.

<![if !vml]><![endif]>

 

Line Defects:
Dislocations

<![if !vml]>

<![endif]>
<![if !vml]><![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

 

<![if !vml]><![endif]>.

 

<![if !vml]><![endif]>The term, “threading”, describes specific cases in which the
dislocation “threads” through a grown layer (i.e. starts at or near the
substrate and ends on the surface.

 

Area Defects:

<![if !vml]>

<![endif]>
<![if !vml]><![endif]>

<![if !supportEmptyParas]> <![endif]>


Volume Defects

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !vml]><![endif]>

 

<![if !vml]><![endif]>Phase Diagrams

<![if !supportEmptyParas]> <![endif]>

<![if !vml]><![endif]>

 

<![if !vml]><![endif]>

 

<![if !vml]><![endif]>

 

<![if !vml]>

<![endif]><![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

 

L

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

L+GaAs

<![if !supportEmptyParas]> <![endif]>

L+GaAs

<![if !supportEmptyParas]> <![endif]>

GaAs+As

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

GaAs+Ga

<![if !supportEmptyParas]> <![endif]>

 

Crystal Growth

<![if !supportEmptyParas]> <![endif]>

<![if !vml]><![endif]><![if !vml]><![endif]>

<![if !supportEmptyParas]> <![endif]>

 

GaAs Liquid
Encapsulated CZ

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !vml]><![endif]>

 

Horizontal
Bridgman GaAs Growth

<![if !vml]><![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

Float Zone Refining

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !supportEmptyParas]> <![endif]>

<![if !vml]><![endif]>